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Abstract
Coastal ecosystems such as mangroves and salt marshes store large amounts of carbon due to high rates of plant productivity and
low organic matter decomposition rates in anoxic soils. As woody mangroves continue to encroach into herbaceous salt marshes,
it is important to understand how these wetland biomes differ in soil microbial communities. Mangroves and marsh plants have
different rooting structures and chemical qualities and could generate different environments for soil microbes, thus leading to
changes in soil carbon processing. In an ecotonal ecosystem in Florida, where mangroves are rapidly encroaching into salt
marshes, we compared wetland soil microbial community composition and function in mangrove-dominated vs. salt marsh-
dominated plots. Microbial community structure differed between mangrove-dominant and marsh-dominant plots. The top
indicator genera in the marsh-dominated plots belonged to putatively anaerobic groups (Tepidibacter, Caldithrix,
Desulfovibro, Fibrobacteres, Thiotrichaceae) while top indicator genera in mangrove-dominated plots had representatives within
Acidobacteria, Nitrospirae, and Proteobacteria. In a substrate-induced respiration assay, samples from mangrove plots with the
greatest root mass also had the highest rate of labile C substrate consumption. Our results suggest that mangroves and marsh
plants have different sediment microbial communities and that future mangrove encroachment into salt marshes could alter soil
microbial communities with potential implications for soil carbon storage.
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Introduction

Coastal ecosystems such as mangrove forests and saltmarshes
store large amounts of carbon and are thus known as Bblue
carbon sinks^ (Chmura et al. 2003; Nellemann et al. 2009;
McLeod et al. 2011). High rates of primary productivity and
slow decomposition rates combine to generate high carbon
sequestration in these ecosystems (McLatchey and Reddy
1998). Specifically, low soil oxygen availability decreases mi-
crobial activity in wetland soils and drives the accumulation of

carbon-rich organic matter (Donato et al. 2011; McLeod et al.
2011). Increasing temperatures and rising seas threaten coastal
ecosystems and are causing dramatic shifts in wetland plant
community structure (Perry and Mendelssohn 2009; Osland
et al. 2013; Cavanaugh et al. 2014). While we know that
wetland plant communities are changing (Osland et al. 2013;
Saintilan et al. 2014) and that these changes alter carbon stor-
age (Bianchi et al. 2013; Doughty et al. 2016; Kelleway et al.
2016; Yando et al. 2016), we know little about the microor-
ganisms responsible for organic matter decomposition in wet-
land soils dominated by different plant types (but, see Rietl
et al. 2016).

Microbial community composition can affect decomposi-
tion (Allison et al. 2013) and nutrient cycling (Reed and
Martiny 2013) in soils. Life history strategies and phylogenet-
ic grouping of microorganisms can influence soil C-cycling
rates and the thus the fate of soil C (Schimel and Schaeffer
2012). In coastal wetland ecosystems, changes in soil micro-
bial community composition are often tightly linked with
changes in ecosystem functions, (e.g. Morrissey and
Franklin 2015a, b) suggesting that these communities may

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s13157-018-0994-9) contains supplementary
material, which is available to authorized users.

* Chelsea R. Barreto
chelseabarreto22@gmail.com; cbarreto@villanova.edu

1 Villanova University, 800 E. Lancaster Ave, Villanova, PA 19085,
USA

2 West Virginia University, Morgantown, VA, USA

Wetlands
https://doi.org/10.1007/s13157-018-0994-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s13157-018-0994-9&domain=pdf
https://doi.org/10.1007/s13157-018-0994-9
mailto:chelseabarreto22@gmail.com
mailto:cbarreto@villanova.edu


influence ecosystem response to global change. Because
coastal wetland ecosystems are important for carbon storage
and storm surge protection, an understanding of microbial
community dynamics in wetland soils is urgently needed.

Increased temperatures and sea level rise have contributed
to the expansion of mangrove forests into saltmarshes (Osland
et al. 2013; Cavanaugh et al. 2014; Saintilan et al. 2014; Giri
and Long 2016). In the Eastern United States, this climate-
driven woody plant expansion into herbaceous wetlands has
been attributed to a decline in severe freeze events (days
colder than −4°C) (Cavanaugh et al. 2014). Sea level rise is
also contributing to this expansion by opening up new water-
ways that allow mangrove propagules to disperse upstream
easily (Krauss et al. 2011) At one site in Florida, we have
shown that mangroves have increased in abundance by 69%
over the past 7 years, thus increasing ecosystem C storage by
22% (Doughty et al. 2016). The soil environment associated
with mangroves and marshes differs (Doughty et al. 2016;
Coldren et al. 2016) but little is known about the soil biota
that inhabit each of these primarily anoxic environments
(Chambers et al. 2016). As many other marsh sites around
the world are also undergoing mangrove encroachment
(Saintilan et al. 2014; Yando et al. 2016), understanding dif-
ferences between soil microbial communities associated with
mangroves and marshes in this transitional state may be im-
portant for understanding changes in soil carbon processing.

The anoxic conditions in saturated marsh and mangrove
soils permit organic matter accumulation, enabling wetland
soils to build vertically and keep up with sea level rise
(Middleton and McKee 2001; Neubauer 2008). However,
roots and other structures of wetland plant species deliver
oxygen to soils via aerenchyma, and thus vegetation shifts
affecting dominant root morphology can potentially increase
oxygen availability in soils (McKee et al. 1988; Jackson and
Armstrong 1999; Armstrong et al. 2000; Reddy and DeLaune
2008). Woody plant roots, like mangroves, have different
chemical qualities (Perry and Mendelssohn 2009) and physi-
ological characteristics (Skelton and Allaway 1996;
Purnobasuki and Suzuki 2004) than herbaceous plant roots
and could deliver different amounts of root exudates (Bertin
et al. 2003). Root-mediated changes in the soil environment
could provide soil microorganisms with oxygen or other sub-
strates, potentially altering microbial community structure
(Noll et al. 2005; Lipson et al. 2015) and fueling more organic
matter decomposition leading to decreases in soil C (Freeman
et al. 2001; Wolf et al. 2007). Thus, assessing the differences
in wetland soil bacteria under mangroves vs. marshes may
allow us to better understand soil organic matter processing
as mangroves continue to encroach into marshes.

Here we aimed to examine variation in microbial com-
munity composition and function in mangrove and marsh
dominated soils. This was accomplished in an ecotonal eco-
system in Florida where we have been documenting the

ecosystem impacts of mangrove encroachment into salt
marshes (Simpson et al. 2013; Doughty et al. 2016;
Coldren et al. 2016). Specifically, we investigated bacterial
community composition in soils from plots dominated by
either mangroves or marshes and positioned across a
mangrove-marsh ecotone. Using incubation experiments,
we assessed wetland soil respiration in response to labile
substrate and oxygen availability. We hypothesized that (i)
mangrove-dominated vs. marsh-dominated plots would
have distinct microbial community structures, (ii) soil or-
ganisms from mangrove-dominant plots will respire more
CO2 in response to labile substrates and (iii) mangrove-
dominant plots would have higher microbial CO2 respira-
tion rates than marsh-dominant plots in both aerobic and
anaerobic conditions.

Materials and Methods

Site Description

We conducted this research at the Kennedy Space Center
(KSC) and the overlying Merritt Island National Wildlife
Refuge (MINWR), on the Eastern Coast of Florida
(28.4889°N, 80.5778°W). Coastal wetlands in this area, and
many areas in Florida, were impounded, or Bditched^, in the
1950s in order to control for mosquito populations. The study
site we used is tidally connected to the Indian River Lagoon
through a series of culverts that are currently unmanaged and
remain open to allow natural tidal flow. The tides within the
IRL are microtidal and vary from 0.1 to 0.7 m (Smith 1987)
and the soils consist of organic matter and/or silty clays over
sand and irregularly stratified mixed sand and shell. Soil sa-
linity ranges from 30.0 to 50.8 ppt.

Though mangroves have been abundant in this region in
the past, over the last five decades, this site has undergone
many rapid vegetation changes due to freeze events, which
can kill off mangroves (Provancha et al. 1986). However,
the recent absence of severe freeze events at this site has
allowed mangroves to increase dramatically. In the last
7 years alone, mangrove abundance has increased by 69%
at MINWR (Doughty et al. 2016). The co-dominance of
these two species makes MINWR an ideal location to com-
pare mangrove and marsh soil communities (Coldren et al.
2016). Specifically, the mangrove-marsh ecotone at this site
is dominated by three mangrove species (Rhizophora
mangle , Avicennia germinans , and Laguncularia
racemosa) and four marsh species (Spartina alterniflora,
Distichlis spicata, Batis maritima and Salicornia bigelovii).
A. germinans and L. racemosa are the dominant mangroves
at our site and D. spicata covers 85% of the marsh plots at
our focal site.
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Experimental Design

In 2013, we established a series of ten 3 m × 7 m transects at
our site that spanned the transition from mangrove-dominated
to salt marsh grass-dominated vegetation. We randomly se-
lected two 1m2 plots at either end of these transects, one of
which was dominated by small white mangroves (>70% of
plot cover where young mangroves were encroaching into
marshes) and one of which was dominated by the marsh grass
D. spicata (>90% of plot cover). From hereafter we refer to
these plots as either Bmangrove-dominant^ and Bmarsh-
dominant^ and we characterize the two different plot types
as Bvegetation types^ (grass vs. tree; Fig. 1). We chose tran-
sects with small younger mangroves, rather than mature larger
mangroves, in order to examine soils from plots in the transi-
tional state when mangroves have recently encroached into
marshes. Using a combination of sequential aerial photos
and growth indices from a previous study, we were able to
identify the focal mangroves in mangrove-dominant plots as
juvenile trees (Doughty et al. 2016). Though these transects
are rather short, the mangrove-dominant and marsh-dominant
plots at either end represent distinct vegetation types and yet
do not differ in other state factors that could change the mi-
crobial community. Thus, we are able to control for abiotic
factors such as salinity, organic matter depth of soils, surface
elevation, percent carbon, etc. (Table 1) that have either been
shown to or would likely influence wetland soil microbial
communities (e.g. Morrissey et al. 2014; Morrissey and
Franklin 2015a).

We investigated wetland plant influence on soil communi-
ties and respiration by sampling soils from the above-
described 1m2 mangrove-dominant and marsh-dominant plots
(two vegetation types × 10 plots; <7m away) that were similar
in other environmental conditions (Table 1). We also sampled

soils from three randomly chosen pure mangrove and pure
marsh plots outside these transects to compare microbial sub-
strate induced respiration (SIR) in these pure vegetation types
with the ecotonal plots (Fig. 1). The SIR assay is the only
analysis that utilized the pure mangrove and pure marsh sam-
ples but we report root and soil characteristics of these plots in
Table 1.

Environmental Analyses

Root Biomass

In October 2014, a year after the mangrove- and marsh-
dominant plots were established, soil cores were taken to ob-
tain belowground root biomass at three depths. One soil cores
was taken in each of the 20 plots under the dominant species
(10 mangrove-dominant plots-L. racemosa, 10 marsh-
dominant plots- D. spicata) to a depth of 60 cm using a stain-
less steel gouge auger (AMS sampling, American Falls, ID)
and sectioned into 0–20 cm, 20–40 cm, and 40–60 cm incre-
ments. After washing through a 2 mm sieve, roots were sorted
into fine (< 2mm) and coarse (> 2mm) diameter categories, as
well as live and dead. After drying the roots in an oven, total
dry root mass was assessed. We used total root mass because
we wanted to characterize the root organic matter change dur-
ing this interval. In March 2016, in order to observe the
change in root mass over time, root mass was again assessed
by following the above-described coring and sorting proce-
dures. Root biomass was also obtained in 2016 for the pure
mangrove and pure marsh plots (n = 3).

Soil Characteristics

Soil salinity was measured in the field using a Refractometer
(Extech, Model RF20). Oxygen measurements were taken in
the field using a Fire Sting O2 Optimal Oxygen Meter
(Pyroscience, Bremen, Germany) in mangrove-dominant
and marsh-dominant plots at depths of 10 and 40 cm in
March 2016. A portion of each soil core was dried for mea-
surement of moisture (dried for 24 h at 70 °C) and carbon (C)
concentration (Leco TruSpec CN, St. Joseph, MI). Carbon
was measured at depths of 5, 10, 15, and 20 cm.

Soil Microbial Community Analyses

For molecular analysis we took 2 cm × 5 cm subcores hori-
zontally at 10 cm from the previously described 60 cm soil
cores (1 core per plot) and immediately placed them on dry ice
in the field. Upon return to the laboratory, samples were stored
at −80 °C.Though recent studies have shown that soil fungi
are abundant in salt marsh ecosystems (Kandalepas et al.
2010; Rietl et al. 2016), we chose to focus our study on the
soil prokaryotes. Whole community bacterial DNA was

Fig. 1 Experimental Design set up. Plots were set up across the
mangrove-marsh ecotone, where there were a mangrove-dominant plots
(>70% cover, yellow dots), and marsh-dominant plots (>90% cover,
green dots). Three random samples were taken in the Bpure mangrove^
area, represented by blue dots, and three random samples were taken in
the Bpure marsh^ area, represented by orange dots. Picture is not to scale
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extracted from ~0.5 g of each of the soil subcores using
MOBIO PowerSoil DNA Isolation Kit (MOBIO, Carlsbad,
CA). To increase DNA yield, modifications were made to
the protocol. Specifically, samples were centrifuged for
2 min at 10,000×g before extractions to pellet the cells and
eliminate added liquid. Samples were extracted in duplicate
and pooled together prior to DNA elution (Step 14 of the kit).
DNA purity and concentration were analyzed using the Qubit
Flurometric Quantitation 3.0 (Qubit Company, New York,
NY) and stored at −20 °C until sequencing. DNA extracts
were verified using agarose gel (1%) electrophoresis and
ethidium bromide staining prior to shipping for sequencing.
Samples were sent to GENEWIZ (South Plainfield, New
Jersey) for library preparations and Illumina MiSeq sequenc-
ing of the V3, V4, and V5 hypervariable regions of prokary-
otic 16S rDNA as described in (Wu et al. 2017). Analysis
followed the GENEWIZ 16SMetaVx pipeline. Two amplifi-
cations were preformed, in the first GENEWIZ amplified the
V3 and V4 regions with primers containing the following
target sequences: CCTACGGRRBGCASCAGKVRVGAAT
and GGACTACNVGGGTWTCTAATCC. In the second,
GENEWIZ amplified the V4 and V5 regions with primers
c o n t a i n i n g t h e f o l l ow i n g t a r g e t s e q u e n c e s :
GTGYCAGCMGCCGCGGTAA and CTTGTGCG
GKCCCCCGY (Wu et al. 2017). Indices were attached to
PCR products and the normalized libraries were then
multiplexed and subjected to sequencing on an Illumina
MiSeq (Illumina, San Diego, CA, USA). Some samples sent
for sequencing failed, either because there was not enough
extractable DNA or because the quality of this DNAwas poor
in those soils. As the soils at MINWR are very sandy, it is
possible that we did not have enough organic matter to be able
to extract sufficient DNA. Because of these challenges, only 4
mangrove-dominant soils and 6 marsh-dominant soils were
successfully sequenced.

Substrate Induced Respiration

We used one soil core from each plot (10 each of marsh-
dominant and mangrove- dominant and 3 each of pure marsh
and mangrove) taken in March 2016 to examine soil respira-
tion as a measure of microbial function. We estimated relative

aerobic substrate induced respiration from soil cores using the
substrate-induced respiration (SIR) method described in
Fierer et al. (2003). We employed this method to determine
the potential ability of mangrove- dominated vs. marsh-
dominated soil microbial communities to process labile sub-
strates in aerobic conditions. Briefly, 10 g of wet soil from the
mangrove-dominant, marsh-dominant, pure mangrove, and
pure marsh samples were weighed into individual 55 ml glass
vials with 10 ml of yeast extract (Difco Laboratories, Detroit,
MI) solution. The glass vials were sealed with rubber septa
and placed on a shaker for the duration of the 4 h incubation.
Cumulative CO2 concentrations were measured in each vial at
times 0, 45 min, 1 h 15 min, 2 h, and 2 h 45 min.
Measurements were taken using an infrared gas analyzer
(Licor Model LI-7000, Lincoln, NE), and rates were calculat-
ed as μg C-CO2 g soil−1 h−1.

Soil Incubations

We performed soil incubations in both anaerobic and aer-
obic conditions in order to examine potential CO2 efflux of
the soils from mangrove-dominated and marsh-dominated
plots We used one soil core from each plot to perform the
incubations (2 vegetation types × 10 plots × 2 oxygen treat-
ments). The oxygen treatments were included to assess
how microbial function, soil respiration, changes across
vegetation type (mangrove dominant and marsh dominant)
under different oxygen conditions. We sieved subsamples
of soil (~5 g wet weight) from each large core and incu-
bated at room temperature in oxic and anoxic conditions
for a duration of 68 days. Soil was weighed into 55 ml
glass vials (Wheaton Serum Vials, Millville, NJ) and
sealed with rubber septa and metal seals. Vials were
flushed with CO2-Free Air at the start of the incubation
and an additional 2 times throughout the incubation, for
5 min each time. Cumulative CO2 measurements were
measured in each vial on days 1, 2, 4, 6, 13, 20, 21, 23,
28, 35, 42, 49, 50, 52, 56, 63, and 68. Measurements were
taken using an infrared gas analyzer (Licor Model LI-
7000). Average respiration rates (μg C-CO2 g soil−1 h−1)
were determined for each vegetation category under oxic
and anoxic conditions.

Table 1 Mean ± SE of environmental soil parameters for each vegetation type

Vegetation type Organic layer Root biomass–g %C Surface elevation Oxygen Salinity

Marsh-dominant 8.8 cm ± 2.2 3.2675 ± 1.2 4.3531 ± 3.1 246.3 mm ± 16.11 Below Detection 20–50 ppt

Mangrove-dominant 8.0 cm ± 1.4 1.9776 ± 0.7 4.0833 ± 2.5 254.4 mm ± 13.97 Below Detection 20–50 ppt

Pure marsh 7 cm 2.9800 ± 1.2 7.2196 ± 0.8 NA Below Detection 20–50 ppt

Pure mangrove 11 cm 12.290 ± 1.2 10.593 ± 1.3 NA Below Detection 20–50 ppt

Porewater oxygen, %C, and salinity were taken to a depth of 20 cm
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Data Analysis

Wetland plant root mass (g/m2) and %C data were compared
between mangrove-dominant and marsh-dominant plots at
each depth with a one-way ANOVAwith block and treatment
as factors. Root mass or %C data for pure mangrove and pure
marsh plots were not compared statistically with the
mangrove-dominant and marsh-dominant plots due to un-
equal replication. When block was not significant, it was re-
moved from the analyses. Root biomass data were log trans-
formed prior to ANOVA due to non-normality.

Bacterial and Archaeal 16S rRNA gene sequences were
processed with QIIME 1.9.0 (Caporaso et al. 2010a) using
default parameters. Sequences were clustered into operational
taxonomic units (OTU) by 97% sequence identity using uclust
against the Greengenes database version 13_8 (Edgar 2010;
McDonald et al. 2012). The sequences for corresponding
OTUs were aligned using PyNAST algorithm (Caporaso
et al. 2010b), which produced taxonomic assignment with
RDP classifier (Wang et al. 2007). Prior to downstream anal-
ysis, OTUs accounting for less than 0.005% of sequences
were removed (Bokulich et al. 2013). Samples were rarified
at 168,086 reads per sample. Community composition of soils
was visualized using a principal coordinates analysis (PCoA)
and analyzed via a permutational multivariate analysis of var-
iance (PerMANOVA) with the vegan package in R (version
3.2.3). Prokaryotic alpha diversity was determined using Chao
1 phylogenetic diversity index, (QIIME output). A t-test was
done to determine the differences in alpha diversity based on
vegetation type. To further understand how the communities
differed, an indicator species analysis was performed at the
genus level using R (version 3.2.3).

To gain insight into why vegetation caused differences in
microbial community structure we examined bacterial groups
in more detail. Previous studies have shown that root environ-
ments can be different in oxygen availability (Sorrell and
Armstrong 1994), and we found that oxygen had large impacts
on microbial respiration from our lab incubations. Thus, bacte-
rial phyla identified in our study were putatively classified as
aerobic or anaerobic based on an extensive literature search.We
emphasize that we perform these classifications to merely ex-
plore the bacterial community changes and generate hypotheses
for future work, not to definitively prove effects on vegetation
on soil oxygen delivery or community composition. In order to
be called Bputatively aerobic^ or Bputatively anaerobic^ a tax-
onomic group had to be described in the literature as either
obligate aerobic or obligate anaerobic, or predominantly aero-
bic or predominantly anaerobic to be included in the analysis.
Bacterial groups that did not fit these criteria were excluded.
Supplemental Table 4 provides a complete listing of the puta-
tively aerobic and anaerobic groups that we used. It is important
to note that we do not yet know themetabolisms of all members
of these microbial groups, due to the paucity of data on soil

microbial metabolism, particularly for wetland soils. The rela-
tive abundances of relevant putative aerobic and anaerobic mi-
crobial phyla in mangrove-dominant vs. marsh-dominant plots
was also analyzed via PerMANOVA. The relative abundance
of all putative anaerobic and aerobic microorganisms (all
groups were added together) were compared for both
mangrove-dominant and marsh-dominant plots using a one-
way ANOVA for each vegetation type. The relative abundance
of relevant taxonomic groups were assessed using a one-way
ANOVA with vegetation type as the main effect and Tukey’s
HSD for post hoc comparisons.

We assessed labile substrate usage in the two vegetation
type soils by calculating the slopes of linear functions fitted
to the carbon dioxide respiration rates (μg per g C hr.−1) of
each sample over the 4 h incubation. Concentrations of CO2

increased linearly over time (R2 = 0.57–0.97). We examined
the impact of mangrove cover on SIR rates using a bivariate
correlation analysis. The effects of oxygen and vegetation on
CO2 respiration for the lab incubation were analyzed using a
repeated measures ANOVA (JMP 12.0, SAS Software 2012).
The cumulative amount of carbon respired was determined by
integrating values under the curve of the 68 day sampling
period. The impacts of vegetation and oxygen on cumulative
carbon respired during the 68 day incubation were analyzed
using a two-way ANOVAwith oxygen treatment and vegeta-
tion as factors. For statistical significance we assumed an α
level of 0.05. Normality was assessed using the Shapiro-Wilks
test. Data were log-transformed to conform to assumptions of
homoscedasticity. Data analyses were performed using JMP
12.0 (SAS Software 2012) and R studio (version 3.2.3).

Results

Root Biomass and Soil Characteristics

In all plots, root mass was greatest in the shallow depth (0–20)
and declined with depth (p < 0.001, Supplementary Table 1).
There was significantly more shallow depth root biomass in
marsh-dominant plots than in mangrove-dominant plots (p =
0.008). There was significantly more shallow depth root bio-
mass in pure mangrove plots than in pure marsh plots (p =
0.016). Percent C was greatest in all of the plots at the 10 cm
depth and did not differ due to vegetation (Table 1). Soil sa-
linity ranged from 20 to 50 ppt at this site and did not differ in
mangrove-dominant vs. marsh-dominant plots. Porewater ox-
ygen was not detectable (readings were zero) in both
mangrove-dominant and marsh-dominant subplots.

Soil Prokaryotic Community

All soils that were sequenced were dominated by
Proteobacteria (34–44% of relative abundance of 16S rRNA
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gene sequences), Firmicutes (12–18%), Chloroflexi (4–6%),
Bacteroidetes (1–2%), and Acidobacteria (1–4%) (Fig. 2).
Marsh soils had greater prokaryotic diversity than mangrove
soils (Chao1 mean±S.E., Marsh = 2332±34, Mangrove =
2275±21; t = 2.93, p = 0.019). Microbial community compo-
sition was significantly different between vegetation type as
determined by a one-way PerMANOVA (F = 1.53, p = 0.048,
Fig. 3). To better understand how these communities differed
we performed an indicator species analysis (Table 2). The top
indicator genus in the marsh ecosystem was Tepidibacter
(class Clostria). Isolates from this genus have been character-
ized as anaerobic and fermentative (Slobodkin et al. 2003;
Urios et al. 2004; Tan et al. 2012). The marsh also favored
Desulfovibrio a genus of anaerobic sulfate reducing bacteria
(Heidelberg et al. 2004; Meyer et al. 2013). The remaining
indicator genera were unclassified groups within
Thiothrichaeaea (a family of Gammaproteobacteria) as well
as the under described phyla Fibrobacteres and Caldithrix.
The top indicator genera for the mangrove soils included
two genera within Nitrospirae, an unknown genus within
Nitrospirales and BD2.6 within Thermodesulfovibrionaceae.
The other indicators included unknown genera within
Acidobacteria, Alteromonadales, and Entoeonellaceae.

Substrate-Induced Respiration

Substrate induced respiration rates were highest in pure man-
grove plots as determined by a bivariate correlation analysis

(R2 = 0.18, p = 0.037). Cumulative C respired over the 4 h
incubation did not significantly differ between any of the soil
types but similar to the SIR rate, cumulative carbon respired
tended to be highest in the pure mangrove (28.40 ± 2.31 μg
per g C hr.−1) and lowest in the pure marsh (18.27 ± 1.24 μg
per g C hr.−1).

Fig. 2 Stacked bar graph of
prokaryotic community
composition in mangrove-
dominant and marsh-dominant
soilsRelative abundance of phyla
(%) are reported alphabetically

Fig. 3 Principle coordinates analysis (PCoA) comparing microbial com-
munity composition between mangrove-dominant and marsh-dominant
plotsStatistical significance was evaluated by PerMANOVA.
Communities were significantly different across vegetation types (p =
0.048)
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Aerobic and Anaerobic Soil Respiration

There was a significant effect of oxygen (p = 0.026) on soil
respiration rate but no effect of vegetation and no significant
interaction between vegetation and oxygen (Supplementary
Table 2). We also found that oxic microcosms had significant-
ly higher cumulative C respired (p < 0.001) but there was no
interaction between vegetation and oxygen treatment (Fig. 4,
Supplementary Table 3).

Discussion

We hypothesized that mangrove-dominated vs. marsh-
dominated plots would have different microbial community
structures and our findings support this hypothesis. Prior stud-
ies have shown that an increase or decrease in aboveground
biomass (Callaway et al. 2004; Strickland et al. 2009) or
changes in soil organic matter (Morrissey et al. 2014) can alter
microbial community structure in wetland soils. Rietl et al.
(2016) found that microbial community structure differed in
salt marsh sediments with different vegetation types, particu-
larly between Juncus roemerianus and Spartina alterniflora
Similarly, we found that plots dominated by different wetland
plant species (L. racemosa and D. spicata) had different mi-
crobial communities..

The change in microbial community composition we ob-
served could be due to differences in root environment driven
by the dominance of mangroves vs. marshes, which include
differences in root exudates or oxygen availability. Beyond an
increase in root mass in marsh soils, there was little detectable
difference in the environmental characteristics of marsh- vs.
mangrove-dominant soils (Table 1). Pure mangrove soils did
show higher root biomass than the other plot types but this
investment in prolific roots may not be added until pioneer man-
groves reach maturity. However, root biomass alone may not be
a good indicator of root environment changes in wetland soils
because root mass does not necessarily correlate with physiolog-
ical activities (exudation, nutrient update, etc.) Further, the root
architecture of mangrove vs. marsh roots differ, particularly in
the abundance of the oxygen provisioning tissue, aerenchyma
(Skelton and Allaway 1996; Purnobasuki and Suzuki 2004).We
did not measure root exudates and could not detect oxygen in the
field via in situ measurements. This is a common problem,;
porewater oxygen is often undetectable in wetland soils likely
because microorganisms are consuming oxygen as quickly as it
is being released,making levels of oxygen difficult to detect with
field instruments (Reddy et al. 1980; Sorrell and Armstrong
1994; Armstrong et al. 2000). Redox measurements could have
provided more integrated measurements of oxygen availability
but this method was unavailable to us for this study.
Consequently, there could be biologically relevant, yet

Table 2 Five best prokaryotic
indicator genera for the Marsh
and Mangrove dominant soils

Genera Indicator
value

p Relative abundance (%)

Mangrove Marsh

Marsh Unknown genus in phylum
Fibrobacteres

1 0.007 NDa 0.0312 ±
0.0603

Tepidibacter (class Clostridia) 1 0.002 NDa 0.0009 ±
0.0008

Unknown genus in phylum
Caldithrix

1 0.005 NDa 0.0045 ±
0.0038

Unknown genus in family
Thiotrichaceae

0.99 0.024 0.0004 ±
0.0006

0.0840 ±
0.1741

Desulfovibrio (class
Deltaproteobacteria)

0.98 0.016 0.0003 ±
0.0004

0.0191 ±
0.0253

Mangrove Unknown genus in order
Nitrospirales

0.98 0.042 0.1140 ±
0.2049

0.0027 ±
0.0034

BD2.6 in family
Thermodesulfovibrionaceae

0.92 0.048 1.0514 ±
1.5922

0.0967 ±
0.0444

Unknown genus in phylum
Acidobacteria

0.85 0.004 0.3860 ±
0.1869

0.0704 ±
0.0223

Unknown genus order
Alteromonadales

0.84 0.034 0.0069 ±
0.0025

0.0013 ±
0.0022

Unknown genus Entotheonellaceae 0.79 0.006 0.4898 ±
0.3977

0.1333 ±
0.0235

Indicator value, p-value, and relative abundance (mean ± the standard deviation% 16S rRNA gene sequences) are
reported
a Genus was not detected (ND) in the mangrove soils
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undetectable, differences in oxygen efflux between the vegeta-
tion types capable of alteringmicrobial community structure and
function.

The top five indicator taxa were predominately anaero-
bic in the marsh and aerobic in the mangrove dominated
plots suggesting that differences in oxygen availability be-
tween vegetation types may be influencing microbial com-
munity composition. All of the indicator taxa within the
marsh dominated plots belonged to taxonomic groups con-
taining anaerobic representatives. Tepidibacter and
Desulfovibrio are relatively well described anaerobic gen-
era typified by fermentative and metal reducing metabolism
respectively (Heidelberg et al. 2004; Meyer et al. 2013;
Slobodkin et al. 2003; Urios et al. 2004; Tan et al. 2012).
Although less well described, members of Caldithrix
(Miroshnichenko et al. 2003, 2010; Alauzet and Jumas-
Bilak 2014), Thiotrichaceae (Girnth et al. 2011; Schulz
2006) and Fibrobacteres (Hongoh et al. 2006; Ransom-
Jones et al. 2012) have been found to possess anaerobic
metabolism and inhabit anaerobic environments.
Phylogenetic and genomic analysis of Fibrobacteres has
identified anaerobic metabolism as a unifying feature of
the phylum (Rahman et al. 2016). In contrast, over half of
the indicator taxa within mangrove dominated soils
belonged to taxonomic groups containing aerobic represen-
tatives. The Nitrospirales order is best known for aerobic
nitrifying bacteria (Lücker et al. 2010; Daims et al. 2015)
and most isolates of Acidobacteria are aerobic heterotrophs
(see review by Ward et al. 2009). Alteromonadales have
previously been document to inhabit mangrove soils (Dos
Santos et al. 2011) and isolates include aerobic marine bac-
teria (Raguenes et al. 1996; Methé et al. 2005). Little is
known about Entotheonellaceae (Schmidt et al. 2000;
Brück et al. 2008), and Thermodesulfovibrionaceae

(Sonne-Hansen and Ahring 1999; Haouari et al. 2008) in
soil because characterized members of these groups come
from marine sponges and host springs respectively.

To further explore the possibility that oxygen availability
could be driving the differences in community composition
between vegetation types, we used a literature-based exami-
nation of the microbial groups present in our soil samples and
classified taxonomic groups as putatively aerobic or anaerobic
(Supplementary Table 4). Overall, communities of putative
aerobic and anaerobic microorganisms were significantly dif-
ferent across vegetation types as determined by a
PerMANOVA (Supplementary Fig. 1). These community
changes show a trend of greater relative abundance of putative
aerobic microbes in mangrove-dominant plots and relatively
more putative anaerobic organisms in marsh-dominant plots.
Though the cumulative relative abundances of aerobic and
anaerobic groups did not differ due to vegetation type, the
relative abundance of Chloroflexi was significantly greater in
the marsh-dominant plots (F = 12.93, p = 0.037). Similarly,
Acidobacteria, putative aerobes, had significantly greater rel-
ative abundance in the mangrove-dominant plots (F = 13.20,
p = 0.036). We also found a higher relative abundance of the
putatively aerobic phyla Actinobacteria, Bacilli, and
Nitrospira, in mangrove-dominant plots (Nazina et al. 2001;
Saarela et al. 2004, Ward et al. 2009; Yarwood et al. 2013).

Overall the indicator taxa analysis and the relative abun-
dances of bacteria phyla suggest that mangroves could be
releasing more oxygen into the soil and increasing the
abundance of aerobic microorganisms. However, the meta-
bolic potential of many taxonomic groups, is not well char-
acterized or constrained. Consequently, future work is
needed to validate the trends observed here and definitively
demonstrate the influence on vegetation type oxygen deliv-
ery to soil microorganisms.

Dominant vegetation type 

Fig. 4 Mean ± standard error of
carbon respired over a 68 day soil
incubationMangrove-dominant
and marsh-dominant soils were
incubated in anoxic and oxic
conditions. Statistical significance
was evaluated using a two-way
ANOVA. There was an effect of
oxygen (p < 0.001) but no effect
of vegetation or interaction
between oxygen and vegetation
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This understanding is needed because if aerobic microor-
ganisms are able to process organic matter more quickly, as
would be expected because aerobic respiration using oxygen
is thermodynamically more favorable than anaerobic respira-
tion (using alternative terminal electron acceptors), this com-
munity shift could potentially alter blue carbon storage. In
another investigation of mangrove vs. marsh soil processes,
Perry and Mendelssohn (2009) found that mangrove soils had
slightly higher redox potential but that under these young
mangroves, soil carbon had not yet changed. Similarly, we
didn’t find differences in soil C under mangroves vs. marshes
at a landscape-scale study at this site (Doughty et al. 2016).
We predict that soil C differences, if they occur due to plant-
specific differences in soil oxygenation andmicrobial process-
ing of organic matter, may take decades to manifest.

To examine how marsh vs. mangrove dominance may im-
pact potential microbial carbon processing activity, we mea-
sured SIR, which allowed us to examine the abundance and
potential ability of microbes to utilize a carbon substrate in
fully oxic conditions (Fierer et al. 2003).We hypothesized that
mangrove-dominant plots would produce more CO2 when
exposed to labile substrates due to more abundant putatively
aerobic organisms. However, we found that only soils with
100% mangrove cover (pure mangrove plots) had the highest
substrate-induced respiration rates. This finding supports the
idea that the microbial communities associated with mangrove
roots are more efficient than marsh microbes at utilizing a
carbon substrate in oxic conditions. It may be that the soils
of mangrove-dominant plots were not yet dominated by man-
grove roots. However, we weren’t able to test this idea be-
cause we couldn’t discern the difference between mangrove
and marsh roots in soil cores. Because we know that more
oxygen can fuel microbial organic matter decomposition
(Freeman et al. 2001; Wolf et al. 2007), it’s possible that con-
tinuing mangrove encroachment into marshes could lead to
soil carbon losses. However, increasing root biomass due to
mangrove encroachment could potentially offset these de-
creases in soil carbon over the long-term (Doughty et al.
2016).

To determine how marsh and mangrove soil microbial res-
piration responds to oxygen availability, we performed a soil
incubation of each soil type in oxic vs. anoxic conditions. As
expected, our results indicate that microbial respiration of both
mangrove and marsh soils were much higher in oxic condi-
tions. However, counter to our hypothesis, soil CO2 respira-
tion was not influenced by mangrove or marsh dominance in
the plots. Respiration in these incubations was likely to be
influenced by microbial community efficiency and abun-
dance, and by soil carbon availability. Consequently, differ-
ences in the chemical quality in the soil carbon pools, for
instance more labile C accumulation in the marsh dominant
soils, could mask differences in microbial community effi-
ciency and abundance, generating no net effect of vegetation

on soil respiration. It is important to note that we conserva-
tively sampled soil from mangrove plots with smaller, young
mangroves (Fig. 1, BJuvenile mangroves^) as opposed to the
larger, more mature mangrove plots where we know there is
more soil C stored, more root production (data not shown),
and perhaps more putatively aerobic microorganisms. Though
vegetation type does not influence soil respiration in this in-
cubation, the incubation necessarily lacked roots, which we
predict are the conduits of limiting oxygen into these soils.
These incubation data help confirm that oxygen is a major
limitation on CO2 efflux in these wetland soils.

Blue carbon- rich ecosystems such as mangroves and
saltmarshes are exceedingly important in combatting climate
change, as they store large amounts of carbon (McLeod et al.
2011). While some studies, including our own, have shown
increases in aboveground C storage with mangrove encroach-
ment into marshes (Doughty et al. 2016; Kelleway et al. 2016;
Yando et al. 2016), little work has been done on belowground
organisms that may regulate carbon loss from these systems.
Our work provides a comprehensive assessment of microbial
community structure in wetland soils where vegetation is
shifting rapidly and serves as a starting point for further re-
search into wetland soil microbial communities as dominant
plant species shift with climate change. Further, we provide
important insights into belowground C dynamics at a site
where mangroves are encroaching into saltmarshes. Further
study into wetland organic matter decomposition and the or-
ganisms that regulate this carbon processing is important to
understanding wetland carbon budgets and their capacity to
keep up with sea level rise (Kirwan and Megonigal 2013).
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